Name:
Period: \qquad
Directions: Determine if each point is a solution for the linear inequality. Circle the solutions. Show all work.

1. $y>\frac{3}{4} x+5$
a. $(6,-2)$
b. $(-4,-10)$
c. $(12,-6)$
d. $(0,4)$
e. $(8,11)$
f. $(-12,-2)$
2. $4 x+3 y \leq 20$
a. $(7,-4)$
b. $(-4,10)$
c. $(-8,-2)$
d. $(6,-3)$
e. $(5,0)$
f. $(-3,11)$

3. $2 x-y<12$
a. $(-2,-14)$
b. $(6,6)$
c. $(5,-2)$
d. $(10,6)$
e. $(-3,8)$
f. $(7,0)$
4. $y \leq-\frac{5}{2} x-4$
a. $(6,-10)$
b. $(-8,16)$
c. $(0,-1)$
d. $(2,-12)$
e. $(-5,-16)$
f. $(-9,-30)$

																			\square

					,		-			-	-	-		-	\square			\square
																		-
																		-
																		-
														-				
																		\square

5. Roger is at a school carnival and decides to play the Grocery Game. To play the Grocery Game, Roger picks 1 grocery item from 6 items without knowing the prices. Then he buys an amount of the item so that the price falls between $\$ 45$ and $\$ 50$. If the items fall between the 2 prices, he wins a prize. If not, he loses. Roger picks a jar of pasta sauce and buys 18 jars.
a. Write a compound inequality to find the range of prices for Roger to win.
b. Solve the compound inequality. Round all long decimals to the hundredths place.
c. Graph the solutions in part b (above) on the number line.
6. Haili decides to play the Grocery Game. To play the Grocery Game, Haili picks 1 grocery item from 6 items without knowing the prices. Then she buys an amount of the item so that the price falls between $\$ 45$ and $\$ 50$. If the items fall between the 2 prices, she wins a prize. If not, she loses.
Haili picks a bag of frozen vegtables and buys 24 bags.
a. Write a compound inequality to find the range of prices for Haili to winner.
b. Solve the compound inequality. Round all long decimals to the hundredths place.
c. Graph the solutions in part b (above) on the number line.

7. Now Mary wants to play the Grocery Game. To play the Grocery Game, Mary picks 1 grocery item from 6 items without knowing the prices. Then she buys an amount of the item so that the price falls between $\$ 45$ and $\$ 50$. If the items fall between the 2 prices, she wins a prize. If not, she loses.
Mary picks a package of cookies and buys 30 packages.
a. Write a compound inequality to find the range of prices for Mary to win.
b. Solve the compound inequality. Round all long decimals to the hundredths place.
c. Graph the solutions in part b (above) on the number line.
8. Murphy wants to try the Grocery Game. To play the Grocery Game, Murphy picks 1 grocery item from 6 items without knowing the prices. Then he buys an amount of the item so that the price falls between $\$ 45$ and $\$ 50$. If the items fall between the 2 prices, he wins a prize. If not, he loses.
Murphy picks a box of cereal and buys 15 boxes.
a. Write a compound inequality to find the range of prices for Murphy to win.
b. Solve the compound inequality. Round all long decimals to the hundredths place.
c. Graph the solutions in part b (above) on the number line.

