Assignment:

Page 257 # 19 – 26, 31 – 33

Tell whether each product is defined. If so, give its dimensions.

19.
$$A_{2\times 1}$$
 and $B_{2\times 3}$; AB

20.
$$A_{2 \times 1}$$
 and $B_{2 \times 3}$; *BA*

21.
$$C_{3 \times 5}$$
 and $D_{5 \times 1}$; *CD*

22.
$$C_{3 \times 5}$$
 and $D_{5 \times 1}$; *DC*

23.
$$E_{7\times7}$$
 and $F_{6\times7}$; EF

24.
$$E_{7\times7}$$
 and $F_{6\times7}$; FE

Use the following matrices for Exercises 25–29. Find each product, if possible.

$$A = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} B = \begin{bmatrix} -3 & 0 \\ 7 & -2 \\ 0 & 1 \end{bmatrix} C = \begin{bmatrix} -2 & 3 & -4 \\ 1 & -1 & 1 \\ 4 & 1 & 3 \end{bmatrix} I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

25. *AB*

26. *CA*

27. CB

Use the following matrices for Exercises 31–40. Simplify, if possible.

$$Q = \begin{bmatrix} 4 & 13 & -9 \end{bmatrix} S = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} T = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{bmatrix} A = \begin{bmatrix} 0 & -1 \\ -1 & 4 \\ 2 & 3 \end{bmatrix} B = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 3 & 5 \end{bmatrix} C = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

31. S²

32. B²

33. T^2