Bell Work

For \#1 and \#2 use $f(x)=x^{2}+8 x-48$.

1. What are the roots for the quadratic function?
2. What is the vertex of the quadratic function?
3. What is a point of the line with an equation of $3 x-4 y=-20 ?$
4. What is the equation for the absolute value parent function?

Find the roots of the quadratic function by completing the square.

$$
\begin{gathered}
f(x)=x^{2}-6 x-8 \\
x^{2}-6 x-8=0 \\
x^{2}-6 x=8 \\
x^{2}-6 x+9=8+9 \\
\sqrt{(x-3)^{2}}=\sqrt{17} \\
x-3= \pm \sqrt{17} \\
x=3 \pm \sqrt{17}
\end{gathered}
$$

1. Set the function equal to 0 .
2. Move the c to the other side.
3. Add the new c to both sides.

$$
c=\left(\frac{b}{2}\right)^{2}=\left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9
$$

4. Factor the left side.
5. Square root both sides.
6. Solve for x.
7. 2 Answers

Find the roots of the quadratic function by completing the square.

$$
\begin{gathered}
f(x)=x^{2}+4 x-1 \\
x^{2}+4 x-1=0 \\
x^{2}+4 x=1 \\
x^{2}+4 x+4=1+4 \\
\sqrt{(x+2)^{2}}=\sqrt{5} \\
x+2= \pm \sqrt{5} \\
x=-2 \pm \sqrt{5}
\end{gathered}
$$

1. Set the function equal to 0 .
2. Move the c to the other side.
3. Add the new c to both sides.

$$
c=\left(\frac{b}{2}\right)^{2}=\left(\frac{4}{2}\right)^{2}=(2)^{2}=4
$$

4. Factor the left side.
5. Square root both sides.
6. Solve for x.
7. 2 Answers

Find the roots of the quadratic function by completing the square.

$$
\begin{gathered}
f(x)=x^{2}-7 x+3 \\
x^{2}-7 x+3=0 \\
x^{2}-7 x=-3 \\
x^{2}-7 x+12.25=-3+12.25 \\
\sqrt{(x-3.5)^{2}}=\sqrt{9.25} \\
x-3.5= \pm \sqrt{9.25} \\
x=3.5 \pm \sqrt{9.25}
\end{gathered}
$$

1. Set the function equal to 0 .
2. Move the c to the other side.
3. Add the new c to both sides.

$$
c=\left(\frac{b}{2}\right)^{2}=\left(\frac{-7}{2}\right)^{2}=(-3.5)^{2}=12.25
$$

4. Factor the left side.
5. Square root both sides.
6. Solve for x.
7. 2 Answers

Find the roots of the quadratic function by completing the square.

$$
\begin{aligned}
& f(x)=x^{2}+11 x+10 \\
& x^{2}+11 x+10=0 \\
& x^{2}+11 x=-10 \\
& x^{2}+11 x+30.25=-10+30.25 \\
& \sqrt{(x+5.5)^{2}}=\sqrt{20.25} \\
& \text { 1. Set the function equal to } 0 \text {. } \\
& \text { 2. Move the } c \text { to the other side. } \\
& \text { 3. Add the new } c \text { to both sides. } \\
& c=\left(\frac{b}{2}\right)^{2}=\left(\frac{11}{2}\right)^{2}=(5.5)^{2}=30.25 \\
& \text { 4. Factor the left side. } \\
& \text { 5. Square root both sides. } \\
& \text { 6. Solve for } x \text {. } \\
& x+5.5= \pm 4.5 \\
& \text { 7. } 2 \text { Answers } \\
& x=5.5 \pm 4.5 \\
& x=-5.5-4.5=-10 \\
& x=-5.5+4.5=-1
\end{aligned}
$$

Find the roots of the quadratic function by completing the square.

$$
\begin{gathered}
f(x)=x^{2}-12 x+36 \\
x^{2}-12 x+36=0 \\
x^{2}-12 x=-36 \\
x^{2}-12 x+36=-36+36 \\
\sqrt{(x-6)^{2}}=\sqrt{0} \\
x-6=0 \\
x=6
\end{gathered}
$$

1. Set the function equal to 0 .
2. Move the c to the other side.
3. Add the new c to both sides.

$$
c=\left(\frac{b}{2}\right)^{2}=\left(\frac{-12}{2}\right)^{2}=(-6)^{2}=36
$$

4. Factor the left side.
5. Square root both sides.
6. Solve for x.
7. 2 Answers

Find the roots of the quadratic function by completing the square.

$$
\begin{gathered}
f(x)=x^{2}+2 x-6 \\
x^{2}+2 x-6=0 \\
x^{2}+2 x=6 \\
x^{2}+2 x+1=6+1 \\
\sqrt{(x+1)^{2}}=\sqrt{7} \\
x+1= \pm \sqrt{7} \\
x=-1 \pm \sqrt{7}
\end{gathered}
$$

1. Set the function equal to 0 .
2. Move the c to the other side.
3. Add the new c to both sides.

$$
c=\left(\frac{b}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=(1)^{2}=1
$$

4. Factor the left side.
5. Square root both sides.
6. Solve for x.
7. 2 Answers

Completing the Square to Find the Roots

Chapter 5-4c

Assignment:

Finding the Roots by Completing the Square A Worksheet

