Bell Work

Solve each quadratic equation. Show all work.

1. $x^{2}-7 x-60=0$
2. $3 x^{2}+13 x-10=0$
3. $x^{2}+6 x-20=0$
4. What is the quadratic formula?
5. A ball is thrown up at a velocity of 37 feet per second at a height of 6 ft . When will it reach a height of 20 feet?

$$
20=-\frac{1}{2}(32) t^{2}+37 t+6 \quad g=\frac{32 \mathrm{ft}}{\sec ^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$$
20=-16 t^{2}+37 t+6
$$

$$
0=-16 t^{2}+37 t-14
$$

$$
x=\frac{-37 \pm \sqrt{(37)^{2}-(4)(-16)(-14)}}{-32}
$$

The ball will reach 20 feet at 0.48 seconds going up and 1.84 seconds coming down.

$$
=\frac{-37-21.75}{-32}=1.84=\frac{-37+21.75}{-32}
$$

2. A ball is thrown up into the air at 21.6 meters per second at an initial height of 2.5 m . When will it reach a height of 18 m ?

$$
18=-\frac{1}{2}(9.8) t^{2}+21.6 t+2.5 \quad g=\frac{9.8 m}{\sec ^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$18=-4.9 t^{2}+21.6 t+2.5$
$0=-4.9 t^{2}+21.6 t-15.5$

$$
x=\frac{-21.6 \pm \sqrt{21.6^{2}-(4)(-4.9)(-15.5)}}{-9.8}
$$

The ball will reach a height of 18 meters in 0.9 seconds $\begin{aligned} & \text { going up and } 3.51 \\ & \text { seconds coming }\end{aligned}=\frac{-21.6-12.76}{-9.8} \approx 3.51=\frac{-21.6+12.76}{-9.8} \approx 0.90$ down.
3. A ball is thrown up at a velocity of 46 feet per second at a height of 5 ft . When will it reach a height of 35 feet?

$$
\begin{aligned}
& 35=-\frac{1}{2}(32) t^{2}+46 t+5 \quad g=\frac{32 \mathrm{ft}}{\mathrm{sec}^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i} \\
& 35=-16 t^{2}+46 t+5 \\
& 0=-16 t^{2}+46 t-30 \quad x=\frac{-46 \pm \sqrt{46^{2}-(4)(-16)(-30)}}{-32}=\frac{-46 \pm 14}{-32}
\end{aligned}
$$

The ball will reach 35 feet at 1 second going up and 1.88 seconds coming down.

$$
\begin{aligned}
& =\frac{-46-14}{-32} \approx 1.88 \\
& =\frac{-46+14}{-32} \approx 1
\end{aligned}
$$

Assignment:
Solving Quadratic Equation Word Problems B Worksheet

