Bell Work

Solve each quadratic equation. Show all work.

1. $x^{2}+6 x-72=0$
2. $x^{2}-4 x-10=0$
3. $5 x^{2}+9 x-3=0$
4. What is the quadratic formula?
5. A ball is thrown up into the air at 35 feet per second at an initial height of 5 feet. When will it hit the ground?

Anything thrown up into the air will make a parabola. Since it makes a parabola, we can find the time it takes to hit the ground, the time to reach its highest point, and how high it can reach.

1. A ball is thrown up into the air at 35 feet per second at an initial height of 5 feet. When will it hit the ground?

$$
h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$h(t)$ is the height of something at t time.
t is time, mostly in seconds.
g is the gravitational pull on an object.
9.8 meters per second ${ }^{2}$ 32 feet per second ${ }^{2}$

This is the formula that we will use to today.
v_{i} is the initial velocity (speed).
h_{i} is the initial height.
g can be either, depending on the units.

1. A ball is thrown up into the air at 35 feet per second at an initial height of 5 feet. When will it hit the ground?

$$
\begin{aligned}
& 0=-\frac{1}{2}(32) t^{2}+35 t+5 \\
& 0=-16 t^{2}+35 t+5 \\
& x=\frac{-35 \pm \sqrt{35^{2}-(4)(-16)(5)}}{-32}=\frac{-35 \pm \sqrt{1545}}{\sec ^{2}} \approx \frac{-35 \pm}{-32} \approx \frac{-39.31}{-32} g t^{2}+v_{i} t+h_{i} \\
& x
\end{aligned}
$$

The ball will hit the ground in 2.32 seconds.

$$
=\frac{-35-39.31}{-32}=2.32
$$

2. A ball is thrown up at an initial velocity of 15 meters per second at an initial height of 2 meters. When will it hit the ground?

$$
0=-\frac{1}{2}(9.8) t^{2}+15 t+2 \quad g=\frac{9.8 \mathrm{~m}}{\sec ^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$$
0=-4.9 t^{2}+15 t+2
$$

$$
x=\frac{-15 \pm \sqrt{15^{2}-(4)(-4.9)(2)}}{-9.8}=\frac{-15 \pm \sqrt{264.2}}{-9.8} \approx \frac{-15 \pm 16.25}{-9.8}
$$

The ball will hit the ground in 3.19 seconds.

$$
=\frac{-15-16.25}{-9.8} \approx 3.19
$$

3. A person is on the edge of a 100 meter cliff. He or she throws a rock up into the air at a rate of 17.5 meters per second. When will it hit the ground?
$0=-\frac{1}{2}(9.8) t^{2}+17.5 t+100$

$$
g=\frac{9.8 \mathrm{~m}}{\sec ^{2}}
$$

$$
h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$0=-4.9 t^{2}+17.5 t+100$
$x=\frac{-17.5 \pm \sqrt{17.5^{2}-(4)(-4.9)(100)}}{-9.8}=\frac{-17.5 \pm \sqrt{2266.25}}{-9.8} \approx \frac{-17.5 \pm 47.61}{-9.8}$
The rock will hit the ground in 6.64 seconds.

$$
=\frac{-17.5-47.61}{-9.8} \approx 6.64
$$

4. The same person on the same 100 meter cliff then throws a rock down at a speed of 12 meters per second. When will that rock hit the ground?

$$
0=-\frac{1}{2}(9.8) t^{2}-12 t+100 \quad g=\frac{9.8 \mathrm{~m}}{\mathrm{sec}^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$$
0=-4.9 t^{2}-12 t+100
$$

$$
x=\frac{12 \pm \sqrt{(-12)^{2}-(4)(-4.9)(100)}}{-9.8}=\frac{12 \pm \sqrt{2104}}{-9.8} \approx \frac{12 \pm 45.87}{-9.8}
$$

The rock will hit the ground in 3.46 seconds.

$$
=\frac{12-45.87}{-9.8}=3.46
$$

5. The same person on the same 100 meter cliff then drops rock. When will that rock hit the ground?

$$
0=-\frac{1}{2}(9.8) t^{2}+0 t+100 \quad g=\frac{9.8 \mathrm{~m}}{\sec ^{2}} \quad h(t)=-\frac{1}{2} g t^{2}+v_{i} t+h_{i}
$$

$$
0=-4.9 t^{2}+0 t+100
$$

$$
x=\frac{0 \pm \sqrt{0^{2}-(4)(-4.9)(100)}}{-9.8}=\frac{0 \pm \sqrt{1960}}{-9.8} \approx \frac{0 \pm 44.27}{-9.8}
$$

The rock will hit the ground in 4.51 seconds.

$$
=\frac{0-44.27}{-9.8}
$$

Assignment:
Solving Quadratic Equation Word Problems A Worksheet

