Bell Work

Find the roots for each quadratic function. Show all work.

1. $f(x)=x^{2}+11 x+30$
2. $f(x)=3 x^{2}-8 x+5$
3. Change the function below to vertex form.
4. What is the vertex of the function below?

$$
f(x)=x^{2}-6 x+2
$$

Solve this quadratic equation by completing the square.

$$
\begin{aligned}
& x^{2}+6 x+10=0 \\
& x^{2}+6 x+9=-10+9 \\
& \sqrt{(x+3)^{2}}=\sqrt{-1} \quad \sqrt{-1}=i
\end{aligned}
$$

$$
x+3= \pm i \quad i \text { is an imaginary number }
$$

$$
x=-3 \pm i
$$

We can only imagine what is its value.

Simplify each imaginary number.

$$
2 \sqrt{-9}=2 \sqrt{9} \cdot \sqrt{-1}=2(3) i=6 i
$$

$$
3 \sqrt{-32}=3 \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{-1}=3(4) i=12 \sqrt{2} i
$$

$$
\frac{1}{4} \sqrt{-64}=\frac{1}{4} \sqrt{64} \cdot \sqrt{-1}=\frac{1}{4}(8) i=2 i
$$

$$
-7 \sqrt{-27}=-7 \sqrt{27} \cdot \sqrt{-1}=-7 \sqrt{9} \cdot \sqrt{3} \cdot i=-7(3) \sqrt{3} i=-21 \sqrt{3} i
$$

Simplify each imaginary number.

$$
\begin{aligned}
& 6 \sqrt{-200}=6 \sqrt{200} i=6 \sqrt{100} \sqrt{2} i=6(10) \sqrt{2} i=60 \sqrt{2} i \\
& -5 \sqrt{-180}=-5 \sqrt{36} \cdot \sqrt{5} i=-5(6) \sqrt{5} i=-30 \sqrt{5} i \\
& \frac{1}{2} \sqrt{-112}=\frac{1}{2} \sqrt{16} \cdot \sqrt{7} i=\frac{1}{2}(4) \sqrt{7} i=2 \sqrt{7} i
\end{aligned}
$$

When we add a real number and an imaginary number, we get a complex number.

$$
3+2 i \quad-5-i \quad-2-\sqrt{7} i
$$

The real number is always in front of the imaginary number.

$$
\begin{array}{rl}
1+\sqrt{7} i & 1-\sqrt{7} i \quad
\end{array} \begin{aligned}
& \text { They are called complex conjugates. } \\
& \\
& \\
& \\
& \\
& \\
& \text { The numbers are the same, but the } \\
& \text { imary parts have different signs. }
\end{aligned}
$$

Find the complex conjugate.

$$
\begin{aligned}
& -3-2 i \Rightarrow-3+2 i \\
& 6+4 \sqrt{3} i \Rightarrow 6-4 \sqrt{3} i
\end{aligned}
$$

$$
8-\sqrt{5} i \Rightarrow 8+\sqrt{5} i
$$

Assignment:
Imaginary and Complex Numbers Worksheet

