Bell Work

1. If $f(x)=2 x^{2}-3 x+7$, then what is $f(3)$?
2. Is $(3,-5)$ a solution for $3 x=-1-2 y$?
3. What is the vertex of $y=|2 x+8|-4$?
4. What is the range in interval notation of the absolute value parent function?

Graph $\left\{\begin{array}{l}x \leq 6 \\ y \geq 1 \\ y \leq 2 x+1 \\ y \leq-\frac{1}{2} x+6\end{array}\right\} \begin{array}{ll}\text { Graph the } & (0,1) \\ \text { system of } \\ \text { inequalities, } \\ \text { then find the } \\ \text { vertices. }\end{array} \begin{aligned} & (2,5) \\ & \begin{array}{ll}(6,3) \\ \end{array}\end{aligned}$
Maximize $P=2 x-3 y$

$$
\begin{aligned}
& P=2(0)-3(1)=-3 \\
& P=2(2)-3(5)=-11
\end{aligned}
$$

$$
P=2(6)-3(1)=9
$$

$$
P=2(6)-3(3)=3
$$

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the largest number.
(6, 1); 9

The feasible region is located within the inequalities.
$\binom{y \leq 7}{y \geq-5} \quad \begin{array}{ll}\text { Graph the } \\ \text { system of }\end{array} \quad(-7,-5)$
Graph system of
$(1,-5)$
$(-1,7)$
$(5,7)$

Minimize $P=3 x+2 y-4$

$$
\begin{aligned}
& P=3(-7)+2(-5)-4=-35 \\
& P=3(1)+2(-5)-4=-11 \\
& P=3(-1)+2(7)-4=7 \\
& P=3(5)+2(7)-4=25
\end{aligned}
$$

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the smallest number.
$(-7,-5) ;-35$

The feasible region is located within the inequalities.

$$
(-4,6) ;-19
$$

The feasible region is located within the inequalities.
Graph \(\left\{\begin{array}{l}x \geq-5

y \geq-6

y \leq x+3

y \geq-2 x-6\end{array}\right\} .\)| Graph the | $(-5,8)$ |
| :--- | :--- |
| system of | |
| inequalities, | |
| then find the | |
| vertices. | |\(\quad\left(\begin{array}{l}(0,-6,-6)

v, 0)\end{array}\right.\)

Maximize $P=5 x+3 y+8$

$$
P=5(-5)+3(8)+8=7
$$

Put each vertex into the function and solve. Pick the one

$$
P=5(-5)+3(-6)+8=-35
$$ that works for the function. Here we

$$
P=5(0)+3(-6)+8=-10
$$ pick the largest number.

$$
P=5(3)+3(0)+8=23
$$

(3, 0); 23

The feasible region is located within the inequalities.

Assignment:
Page 209 \# 2-7, 9-14
\#2 and \#5 go together
\#3 and \#6 go together
\#4 and \#7 go together
\#9 and \#12 go together
\#10 and \#13 go together
\#11 and \#14 go together

Graph each feasible region.
2. $\left\{\begin{array}{l}x \geq 0 \\ y \geq 0 \\ y \leq 3 x+3 \\ y \leq-x+7\end{array}\right.$

$$
\text { 3. }\left\{\begin{array}{l}
x \geq 0 \\
y \geq-1 \\
y \leq x+1 \\
y \leq-\frac{1}{4} x+6
\end{array}\right.
$$

$$
\text { 4. }\left\{\begin{array}{l}
x \geq-2 \\
y \leq 1 \\
y \geq 0.5 x-2 \\
y \leq-2 x+3
\end{array}\right.
$$

Maximize or minimize each objective function.
5. Maximize $P=10 x+16 y$ for the constraints from Exercise 2.
6. Minimize $P=3 x+5 y$ for the constraints from Exercise 3 .
7. Maximize $P=2.4 x+1.5 y$ for the constraints from Exercise 4.

Graph each feasible region.

10. $\left\{\begin{array}{l}x \leq 0 \\ y \geq 0 \\ y \leq 9 \\ y \geq-2 x-7\end{array}\right.$

$$
\text { 11. }\left\{\begin{array}{l}
x \geq 0 \\
x \leq 5 \\
y \geq \frac{1}{5} x-3 \\
y \leq-x+4
\end{array}\right.
$$

Maximize or minimize each objective function.
12. Maximize $P=-21 x+11 y$ for the constraints from Exercise 9 .
13. Minimize $P=-2 x-4 y$ for the constraints from Exercise 10 .
14. Maximize $P=x+3 y$ for the constraints from Exercise 11 .

