Bell Work

- 1. If $f(x) = 2x^2 3x + 7$, then what is f(3)?
- 2. Is (3, -5) a solution for 3x = -1 2y?
- 3. What is the vertex of y = |2x + 8| 4?
- 4. What is the range in interval notation of the absolute value parent function?

Chapter 3-4b

Graph

 $\begin{cases} x \leq 6 \\ y \geq 1 \\ y \leq 2x + 1 \\ y \leq -\frac{1}{2}x + 6 \end{cases}$

Graph the system of inequalities, then find the vertices.

Maximize P = 2x - 3y P = 2(0) - 3(1) = -3 P = 2(2) - 3(5) = -11 P = 2(6) - 3(1) = 9P = 2(6) - 3(3) = 3

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the largest number.

(0, 1)(2, 5)(6, 1)(6, 3)

The feasible region is located within the inequalities.

(6, 1); 9

Graph
$$\begin{cases} y \leq 7 \\ y \geq -5 \\ y \leq 2x + 9 \\ y \geq 3x - 8 \end{cases}$$

Graph the system of inequalities, then find the vertices.

Minimize
$$P = 3x + 2y - 4$$

$$P = 3(-7) + 2(-5) - 4 = -35$$

P = 3(1) + 2(-5) - 4 = -11

P = 3(-1) + 2(7) - 4 = 7

P = 3(5) + 2(7) - 4 = 25

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the smallest number.

(5, 7)

(-7, -5); -35

The feasible region is located within the inequalities.

Chapter 3-4b

Graph the system of inequalities, then find the vertices.

$$Minimize P = 4x - y + 3$$

$$P = 4(-4) - 4 + 3 = -17$$

$$P = 4(-4) - 6 + 3 = -19$$

P = 4(1) - (-6) + 3 = 13

P = 4(5) - 6 + 3 = 17

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the smallest number.

(-4, 6); -19

The feasible region is located within the inequalities.

Chapter 3-4b

Graph
$$\begin{cases} x \ge -5 \\ y \ge -6 \\ y \le x+3 \\ y \ge -2x - \end{cases}$$

Graph the system of inequalities, then find the vertices.

Maximize
$$P = 5x + 3y + 8$$

6

$$P = 5(-5) + 3(8) + 8 = 7$$

$$P = 5(-5) + 3(-6) + 8 = -35$$

$$P = 5(0) + 3(-6) + 8 = -10$$

$$P = 5(3) + 3(0) + 8 = 23$$

Put each vertex into the function and solve. Pick the one that works for the function. Here we pick the largest number.

(3, 0); 23

The feasible region is located within the inequalities.

Assignment: Page 209 # 2 – 7, 9 – 14 #2 and #5 go together #3 and #6 go together #4 and #7 go together #9 and #12 go together #10 and #13 go together **#11 and #14 go together**

Graph each feasible region.

$$\begin{aligned}
\mathbf{x} &\geq 0 \\
y &\geq 0 \\
y &\leq 3x + 3 \\
y &\leq -x + 7
\end{aligned}$$

$$\mathbf{x} &\geq 0 \\
y &\geq -1 \\
y &\leq x + 1 \\
y &\leq x + 1 \\
y &\leq -\frac{1}{4}x + 6
\end{aligned}$$

$$\mathbf{x} &\geq -2 \\
y &\leq 1 \\
y &\geq 0.5x - 2 \\
y &\leq -2x + 3
\end{aligned}$$

Maximize or minimize each objective function.

- **5.** Maximize P = 10x + 16y for the constraints from Exercise 2.
- **6.** Minimize P = 3x + 5y for the constraints from Exercise 3.
- 7. Maximize P = 2.4x + 1.5y for the constraints from Exercise 4.

Graph each feasible region.

$$9. \begin{cases} x \ge 0 \\ y \ge 0 \\ y \ge 4x - 4 \\ y \le x + 5 \end{cases}$$

$$10. \begin{cases} x \le 0 \\ y \ge 0 \\ y \le 9 \\ y \ge -2x - 7 \end{cases}$$

$$11. \begin{cases} x \ge 0 \\ x \le 5 \\ y \ge \frac{1}{5}x - 3 \\ y \le -x + 4 \end{cases}$$

Maximize or minimize each objective function.

- **12.** Maximize P = -21x + 11y for the constraints from Exercise 9.
- **13.** Minimize P = -2x 4y for the constraints from Exercise 10.
- **14.** Maximize P = x + 3y for the constraints from Exercise 11.