Name:
Period
Directions: Find the intersection of each pair of equations. Write your answers in ordered pairs. Name each system. Show all work.

1. $\begin{array}{r}2 x-7 y=31 \\ 4 x+3 y=11\end{array}$
2. $y=3 x-1$
3. $6 x-2 y=16$
4. $x-4 y=14$
$3 x=2 y+2$

Directions: Solve the word problem. Show all work. Answer the question with a complete sentence in the answer blanks.
5. Mattie bought some flowers to do some gardening. She bought 6 cases of daffodils and 2 cases of tulips, spending a total of $\$ 130$. Later she bought 3 more cases of each spending $\$ 105$. How much does each case of flowers cost?

Directions: Find all the answers (shade the correct area) for each pair of inequalities.
6. $y<\frac{2}{3} x+6$
$4 x+3 y \geq 12$

Directions: Find the vertices of the bounded region created by the constraints, and then use the object function to find the maximum value.
$y \geq \frac{2}{3} x-5$
7. $y \leq-\frac{4}{3} x+7$
$y \leq \frac{8}{3} x+7$
$P=3 x+2 y-4$

Directions: Find the location of the point in each of the 3 dimensional graphs.
8.

9.

Directions: Draw the points in the 3 dimensional graphs.
10. $(5,-3,2)$

11. $(-3,2,-1)$

Directions: Using the matrices below, evaluate each expression without using a graphing calculator. If not possible, write "Not Possible."
$A=\left[\begin{array}{ll}6 & -2\end{array}\right]$
$B=\left[\begin{array}{cc}-4 & 0 \\ 3 & 2\end{array}\right]$
$C=\left[\begin{array}{cc}7 & -1 \\ -2 & 5\end{array}\right]$
$D=\left[\begin{array}{ccc}-3 & 9 & 0 \\ 2 & -1 & -6\end{array}\right]$
$E=\left[\begin{array}{ccc}3 & -4 & 1 \\ 0 & 5 & -2\end{array}\right]$
12. $B-C=$
13. $D+E=$
14. $B-D=$
15. $4 A=$

Directions: Find the value of each variable.
16. $\left[\begin{array}{cc}2 & a \\ -4 & 3\end{array}\right] \cdot\left[\begin{array}{cc}-6 & 7 \\ 2 & b\end{array}\right]=\left[\begin{array}{cc}-18 & 2 \\ 30 & -16\end{array}\right] \quad$ 17. $\left[\begin{array}{lll}4 & -2 & 3\end{array}\right] \cdot\left[\begin{array}{cc}2 & 4 \\ 5 & c \\ -2 & -1\end{array}\right]=\left[\begin{array}{ll}d & 3\end{array}\right]$
18. $\left[\begin{array}{cc}3 & -4 \\ e & 5\end{array}\right] \cdot\left[\begin{array}{cc}-1 & 7 \\ 6 & f\end{array}\right]=\left[\begin{array}{cc}-27 & 21 \\ 28 & 14\end{array}\right]$
19. $\left[\begin{array}{c}4 \\ -2 \\ g\end{array}\right] \cdot\left[\begin{array}{lll}-5 & h & 3\end{array}\right]=\left[\begin{array}{ccc}-20 & 28 & 12 \\ 10 & -14 & -6 \\ 5 & -7 & -3\end{array}\right]$

