Bell Work

1. What is the quadratic formula?
2. What is the domain in interval notation of the constant parent function?
3. Divide and show all work. $\frac{-5+i}{3-4 i}$
4. Find the roots of this quadratic function. Show all work.

$$
f(x)=x^{2}+12 x-6
$$

Find the intersection of the quadratic and linear functions.

$$
f(x)=x^{2}+6 x-2 \text { and } g(x)=2 x+3
$$

$$
x^{2}+6 x-2=2 x+3
$$

$$
g(-5)=2(-5)+3=-7
$$

$(1,5) \&(-5,-7)$
Set them equal to each other.

Move the linear to the other

$$
x^{2}+4 x-5=0
$$ side, so one side is 0 .

$$
(x+5)(x-1)=0
$$

Factor.

$$
x=-5,1
$$

Solve for x.

Substitute both numbers into the linear function to find you range numbers.

$$
g(1)=2(1)+3=5
$$

Write your ordered pairs.

Find the intersection of the quadratic and linear functions.

$$
\begin{align*}
& f(x)=-x^{2}+8 x-10 \text { and } g(x)=x-4 \\
& -x^{2}+8 x-10=x-4 \\
& -x^{2}+7 x-6=0 \\
& x^{2}-7 x+6=0 \quad \text { change signs. } \\
& (x-1)(x-6)=0 \\
& x=1,6 \\
& g(1)=1-4=-3 \\
& g(6)=6-4=2 \quad(1,-3) \&(6,2) \tag{1,-3}
\end{align*}
$$

Set them equal to each other.

Move the linear to the other side, so one side is 0 .

Factor.

Solve for x.

Substitute both numbers into the linear function to find you range numbers.

Write your ordered pairs.

Find the intersection of the quadratic and linear functions.

$$
\begin{aligned}
& f(x)=x^{2}-12 x+29 \text { and } g(x)=-2 x+8 \\
& x^{2}-12 x+29=-2 x+8 \\
& x^{2}-10 x+21=0 \\
& (x-3)(x-7)=0 \\
& x=3,7 \\
& g(3)=-2(3)+8=2 \\
& g(7)=-2(7)+8=-6 \quad(3,2) \&(7,-6)
\end{aligned}
$$

Set them equal to each other.

Move the linear to the other side, so one side is 0 .

Factor.

Solve for x.
Substitute both numbers into the linear function to find you range numbers.

Write your ordered pairs.

Find the intersection of the quadratic and linear functions.

$$
\begin{aligned}
& f(x)=x^{2}+6 x+7 \quad \text { and } g(x)=-2 x-4 \\
& x^{2}+6 x+7=-2 x-4 \\
& x^{2}+8 x+11=0 \\
& x^{2}+8 x=-11 \\
& x^{2}+8 x+16=-11+16 \\
& (x+4)^{2}=5 \quad \text { Can't factor. Complete the square. } \\
& \sqrt{(x+4)^{2}}=\sqrt{5} \quad g(-1.8)=-2(-1.8)-4=-0.4 \\
& x+4= \pm 2.2 \text { Round. } \quad(-1.8,-0.4) \&(-6.2,-8.4) \\
& x=-4 \pm 2.2 \\
& x=-4+2.2=-1.8 \\
& x=-4-2.2=-6.2
\end{aligned}
$$

Set them equal to each other.

Move the linear to the other side, so one side is 0 .

Factor.

Solve for x.

Substitute both numbers into the linear function to find you range numbers.

Write your ordered pairs.

Find the intersection of the quadratic and linear functions.

$$
\begin{gathered}
f(x)=(x+4)^{2}-3 \text { and } g(x)=-x-5 \\
(x+4)(x+4)-3=-x-5 \\
x^{2}+4 x+4 x+16-3=-x-5 \\
x^{2}+9 x+18=0 \\
(x+3)(x+6)=0 \\
x=-3,-6 \\
g(-3)=-(-3)-5=-2 \\
g(-6)=-(-6)-5=1 \quad(-3,-2) \&(-6,1)
\end{gathered}
$$

Set them equal to each other.

Move the linear to the other side, so one side is 0 .

Factor.

Solve for x.
Substitute both numbers into the linear function to find you range numbers.

Write your ordered pairs.

Find the intersection of the quadratic and linear functions.

$$
\begin{gathered}
f(x)=(x-1)^{2}+7 \text { and } g(x)=3 x-4 \\
(x-1)(x-1)+7=3 x-4 \\
x^{2}-x-x+1+7=3 x-4
\end{gathered}
$$

$$
x^{2}-5 x+4=0
$$

$$
(x-4)(x-1)=0
$$

$$
x=4,1
$$

$$
g(4)=3(4)-4=8
$$

$$
(4,8) \&(1,-1)
$$

$$
g(1)=3(1)-4=-1
$$

Set them equal to each other.

Move the linear to the other side, so one side is 0 .

Factor.

Solve for x.
Substitute both numbers into the linear function to find you range numbers.

Write your ordered pairs.

Assignment:

Finding the Intersection of Quadratic and Linear Functions Worksheet

