Finding Linear Functions

Bell Work:

1. Solve and show all work. $\frac{2}{3}(a+5)=\frac{4}{5} a-3$
2. What is the slope of a line that is perpendicular to

$$
y=-\frac{3}{4} x+4 ?
$$

3. What is the slope of a line that is parallel to

$$
y=\frac{5}{3} x-2 ?
$$

4. What is the slope of the linear function $2 x-3 y=-12$?

Finding Linear Functions

Today, you are going to write linear functions.

$$
\left.\begin{array}{rl}
y+5=-\frac{5}{3}(x-8) & y
\end{array}\right)=\frac{4}{7} x+3
$$

Finding Linear Functions

1. What is the point-slope form of the linear function that is parallel to $y=\frac{3}{2} x+4$ and goes through $(-3,7)$?

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad \begin{array}{l}
\text { Use the point-slope formula and } \\
\text { substitute the numbers into it. }
\end{array} \\
& y-7=\frac{3}{2}(x--3) \\
& y-7=\frac{3}{2}(x+3)
\end{aligned}
$$

Finding Linear Functions

2. What is the point-slope form of the linear function that is perpendicular to $y=-\frac{2}{5} x-9$ and goes through (6, -2)?

$$
y-y_{1}=m\left(x-x_{1}\right) \quad \begin{aligned}
& \text { Use the point-slope formula and } \\
& \text { substitute the numbers into it. }
\end{aligned}
$$

$$
\begin{gathered}
y--2=\frac{5}{2}(x-6) \\
y+2=\frac{5}{2}(x-6)
\end{gathered}
$$

Flip and switch the slope.

Finding Linear Functions

3. What is the slope-intercept form of the linear function that is perpendicular to $y+6=3(x-9)$ and goes through ($-9,4$)?

Use the point-slope formula and substitute the numbers into it.

Flip and switch the slope.

Change to slopeintercept form.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-4=-\frac{1}{3} x-3
$$

$$
y-4=-\frac{1}{3}(x--9)
$$

$$
y=-\frac{1}{3} x+1
$$

$$
y-4=-\frac{1}{3}(x+9)
$$

Finding Linear Functions

4. What is the slope-intercept form of the linear function that is parallel to $4 x-3 y=-16$ and goes through $(6,-7)$?

$$
m=-\frac{A}{B}=-\frac{4}{-3}=\frac{4}{3}
$$

Use the point-slope formula and substitute the numbers into it.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y+7=\frac{4}{3} x-8
$$

Change to slopeintercept form.

$$
y--7=\frac{4}{3}(x-6)
$$

$$
y=\frac{4}{3} x-15
$$

Finding Linear Functions

5. What is the slope-intercept form of the linear function that is parallel to $y-5=-\frac{3}{4}(x+2)$ and goes through $(-3,-5)$?

Use the point-slope formula and substitute the numbers into it.

$$
\begin{array}{cc}
y-y_{1}=m\left(x-x_{1}\right) & y+5=-\frac{3}{4} x-\frac{9}{4} \\
y--5=-\frac{3}{4}(x--3) & y=-\frac{3}{4} x-\frac{29}{4}
\end{array}
$$

Change to slopeintercept form.

$$
y+5=-\frac{3}{4}(x+3)
$$

Finding Linear Functions

6. What is the slope-intercept form of the linear function that is perpendicular to $y=\frac{2}{5} x-7$ and goes through $(9,2) ?$
Use the point-slope formula and substitute the numbers into it.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y=-\frac{5}{2} x+\frac{49}{2}
$$

Flip and switch the slope.

$$
y-2=-\frac{5}{2}(x-9)
$$

Change to slopeintercept form.

$$
y-2=-\frac{5}{2} x+\frac{45}{2}
$$

Finding Linear Functions

Parallel lines have the same slope.
Perpendicular lines have the opposite reciprocal slope.
Flip and Switch

Finding Linear Functions

Assignment:
Finding Parallel and Perpendicular Linear Functions Worksheet

