Bell Work:

$$3x + 4y = -12$$

- 2. What is a point of the linear function above?
- 3. Graph the equation?
- 4. What is the domain for the absolute value parent function?

Graph $4x + 3y \le 16$ and 4x + 3y > -9.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*

(-12, 0)

 $4(-12) + 3(0) \le 16 \qquad 4$

 $-48 \le 16$

True

$$4(-12) + 3(0) > -9$$

-48 > -9 *False*

Must be true for both to shade. Don't shade to the left.

Graph $4x + 3y \le 16$ and 4x + 3y > -9.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*

(0, 0)

 $4(0) + 3(0) \le 16 \qquad 4(0) + 3(0) > -9$ $0 \le 16 \qquad 0 > -9$ *TrueTrue*

False

Graph
$$y \le \frac{2}{3}x + 5$$
 and $y < \frac{2}{3}x - 4$.

- Graph both lines. 1.
- 2. Pick a point in each region: to the left, in the middle, and to the right. to the left: (-12, 0) in the middle: (0, 0) to the right: (12, 0)
- 3. Substitute each point to find if it's true for both inequalities.

(-12, 0) $0 \le \frac{2}{3}(-12) + 5$ $0 < \frac{2}{3}(-12) - 4$ $0 \leq -3$ 0 < -12False

Don't shade to the left.

Graph
$$y \le \frac{2}{3}x + 5$$
 and $y < \frac{2}{3}x - 4$.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*

(0, 0)

$$0 \le \frac{2}{3}(0) + 5$$

 $0 < \frac{2}{3}(0) - 4$
 $0 \le 5$
Use True
Descent for the set of the set o

Must be true for both to shade. Don't shade in the middle.

Graph
$$y \le \frac{2}{3}x + 5$$
 and $y < \frac{2}{3}x - 4$.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*

(12, 0)

$$0 \le \frac{2}{3}(12) + 5 \qquad 0 < \frac{2}{3}(12) - 4$$

$$0 \le 13 \qquad 0 < 4$$

True
True

Graph
$$y \le \frac{2}{3}x + 5$$
 and $y < \frac{2}{3}x - 4$.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*
- 4. Erase any solid line that is NOT touching the shaded region.

Graph
$$x - 2y > 12$$
 and $x - 2y < -10$.

- 1. Graph both lines.
- 2. Pick a point in each region: above, in the middle, and below.
 above: (-12, 0)
 in the middle: (0, 0)
 below: (12, -1)
 We can't use (12, 0)
 because it is on a line.
- *3. Substitute each point to find if it's true for both inequalities.*

(-12, 0)

-12 - 2(0) > 12	-12 - 2(0) < -10
-12 > 12	-12 < -10
False	True

Must be true for both to shade. Don't shade above.

Graph
$$x - 2y > 12$$
 and $x - 2y < -10$.

- 1. Graph both lines.
- 2. Pick a point in each region: above, in the middle, and below.
 above: (-12, 0)
 in the middle: (0, 0)
 below: (12, -1)
- *3. Substitute each point to find if it's true for both inequalities.*

(0, 0)

0 - 2(0) > 12 0 > 12 0 < -10False True

Must be true for both to shade. Don't shade above.

Graph
$$x - 2y > 12$$
 and $x - 2y < -10$.

- 1. Graph both lines.
- 2. Pick a point in each region: above, in the middle, and below.
 above: (-12, 0)
 in the middle: (0, 0)
 below: (12, -1)
- *3. Substitute each point to find if it's true for both inequalities.*

(-12, -1)

 $12 - 2(-1) > 12 \qquad 12 - 2(-1) < -10$ $14 > 12 \qquad 14 < -10$ *TrueFalse*

Must be true for both to shade. Don't shade in the middle.

Graph
$$x - 2y > 12$$
 and $x - 2y < -10$.

- 1. Graph both lines.
- 2. Pick a point in each region: above, in the middle, and below.
 above: (-12, 0)
 in the middle: (0, 0)
 below: (12, -1)
- *3. Substitute each point to find if it's true for both inequalities.*

None of the regions are true for both, so there are no solutions.

Graph
$$y \le -\frac{3}{2}x + 2$$
 and $y < -\frac{3}{2}x - 7$.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*

(-12, 0)

$$0 \le -\frac{3}{2}(-12) + 2 \qquad 0 < -\frac{3}{2}(-12) - 4$$
$$0 \le 20 \qquad 0 < 14$$
True

It's true for both so shade to the left.

Graph
$$y \le -\frac{3}{2}x + 2$$
 and $y < -\frac{3}{2}x - 7$.

- 1. Graph both lines.
- 2. Pick a point in each region: to the left, in the middle, and to the right.
 to the left: (-12, 0)
 in the middle: (0, 0)
 to the right: (12, 0)
- *3. Substitute each point to find if it's true for both inequalities.*
- *4. Erase any solid line that is NOT touching the shaded region.*

Assignment:

FLUENCY PRACTICE: Graphing Systems of Parallel Linear Inequalities Worksheet