Graphing Systems of linequalities

Bell Work:

1. What type is this linear function? $\quad 3 x+4 y=-12$
2. What is a point of the linear function above?
3. Graph the equation?
4. What is the domain for the absolute value parent function?

Graphing Systems of linequalities

Graph $4 x+3 y \leq 16$ and $4 x+3 y>-9$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$
to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
$(-12,0)$

$$
\begin{gathered}
4(-12)+3(0) \leq 16 \\
-48 \leq 16
\end{gathered}
$$

$$
\begin{gathered}
4(-12)+3(0)>-9 \\
-48>-9
\end{gathered}
$$

Must be true for both to shade.

Graphing Systems of linequalities

Graph $4 x+3 y \leq 16$ and $4 x+3 y>-9$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$
to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
$(0,0)$

$$
\begin{array}{cc}
4(0)+3(0) \leq 16 & 4(0)+3(0)>-9 \\
0 \leq 16 & 0>-9
\end{array}
$$

$(0,0)$ is between the lines, so shade between the lines.

Graphing Systems of linequalities

Graph $y \leq \frac{2}{3} x+5$ and $y<\frac{2}{3} x-4$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$ to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
$(-12,0)$
$0 \leq \frac{2}{3}(-12)+5$
$0<\frac{2}{3}(-12)-4$
$0 \leq-3$
$0<-12$

Graphing Systems of linequalities

Graph $y \leq \frac{2}{3} x+5$ and $y<\frac{2}{3} x-4$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$ to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
$(0,0)$

$$
\begin{array}{cc}
0 \leq \frac{2}{3}(0)+5 & 0<\frac{2}{3}(0)-4 \\
0 \leq 5 & 0<-4
\end{array}
$$

True
False

Graphing Systems of linequalities

Graph $y \leq \frac{2}{3} x+5$ and $y<\frac{2}{3} x-4$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$
to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
$(12,0)$

$$
\begin{array}{cc}
0 \leq \frac{2}{3}(12)+5 & 0<\frac{2}{3}(12)-4 \\
0 \leq 13 & 0<4
\end{array}
$$

Both are true, so shade to the right.

Graphing Systems of linequaltties

Graph $y \leq \frac{2}{3} x+5$ and $y<\frac{2}{3} x-4$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$ to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
4. Erase any solid line that is NOT touching the shaded region.

Graphing Systems of linequalities

Graph $x-2 y>12$ and $x-2 y<-10$.

1. Graph both lines.
2. Pick a point in each region: above, in the middle, and below.
above: $(-12,0)$
in the middle: $(0,0)$
below: $(12,-1)$
We can't use $(12,0)$ because it is on a line.
3. Substitute each point to find if it's true for both inequalities.
$(-12,0)$

$$
\begin{array}{cc}
-12-2(0)>12 & -12-2(0)<-10 \\
-12>12 & -12<-10
\end{array}
$$

Must be true for both to shade.
False
True
Don't shade above.

Graphing Systems of linequalities

Graph $x-2 y>12$ and $x-2 y<-10$.

1. Graph both lines.
2. Pick a point in each region: above, in the middle, and below.
above: $(-12,0)$
in the middle: $(0,0)$
below: $(12,-1)$
3. Substitute each point to find if it's true for both inequalities.
$(0,0)$

$$
\begin{array}{cc}
0-2(0)>12 & 0-2(0)<- \\
0>12 & 0<-10
\end{array}
$$

Must be true for both to shade. False

True Don't shade above.

Graphing Systems of linequaltties

Graph $x-2 y>12$ and $x-2 y<-10$.

1. Graph both lines.
2. Pick a point in each region: above, in the middle, and below.
above: $(-12,0)$
in the middle: $(0,0)$
below: $(12,-1)$
3. Substitute each point to find if it's true for both inequalities.
$(-12,-1)$

$$
\begin{array}{cc}
12-2(-1)>12 & 12-2(-1)<-10 \\
14>12 & 14<-10
\end{array}
$$

False

Must be true for both to shade. Don't shade in the middle.

Graphing Systems of linequaltties

Graph $x-2 y>12$ and $x-2 y<-10$.

1. Graph both lines.
2. Pick a point in each region: above, in the middle, and below.
above: $(-12,0)$
in the middle: $(0,0)$
below: $(12,-1)$
3. Substitute each point to find if it's true for both inequalities.

None of the regions are true for both, so there are no solutions.

Graphing Systems of linequalities

Graph $y \leq-\frac{3}{2} x+2$ and $y<-\frac{3}{2} x-7$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$
to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities. $(-12,0)$
$0 \leq-\frac{3}{2}(-12)+2$
$0<-\frac{3}{2}(-12)-4$
$0 \leq 20$
$0<14$
True
True

It's true for both so shade to the left.

Graphing Systems of linequalities

Graph $y \leq-\frac{3}{2} x+2$ and $y<-\frac{3}{2} x-7$.

1. Graph both lines.
2. Pick a point in each region: to the left, in the middle, and to the right.
to the left: $(-12,0)$
in the middle: $(0,0)$
to the right: $(12,0)$
3. Substitute each point to find if it's true for both inequalities.
4. Erase any solid line that is NOT touching the shaded region.

Graphing Systems of linequalities

Assignment:
FLUENCY PRACTICE: Graphing Systems of Parallel Linear Inequalities Worksheet

