Bell Work

1. Find the solution for $6 x-5 y=-46$

$$
3 x+y=-16
$$

. Show all work.
2. What is the slope for $16 x+12 y=144$?
3. What is the range in set notation of the absolute value parent function?
4. Divide $\frac{24 a^{7} b^{-4} c^{-6}}{15 a^{-2} b^{5} c^{-3}}$.

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?
x. adults
Multiply the top equation by -2 and add it to
y. children
z. seniors

$$
\begin{array}{ll}
(-2) \\
20 x+43 y+10 z=614 \\
24 x+59 y+20 z=852 \\
13 x+30 y+5 z=405 & \frac{-40 x-86 y-20 z=-1228}{-16 x-27 y=-376}
\end{array}
$$

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?
x. adults
Multiply the bottom equation by -2 and add it y. children to the middle equation to eliminate the z. z. seniors

$$
\begin{array}{rlrl}
20 x+43 y+10 z & =614 \\
24 x+59 y+20 z & =852 & & 20 x+43 y+10 z=614 \\
\text { (-2) } 13 x+30 y+5 z & =405 & & \frac{-26 x-60 y-10 z=-810}{-6 x-17 y=-196}
\end{array}
$$

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?
x. adults
y. children
z. seniors

$$
\text { (-8) }-6 x-17 y=-196
$$

(3) $-16 x-27 y=-376-48 x-81 y=-1128$

$$
\begin{gathered}
55 y=440 \\
y=8
\end{gathered}
$$

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?
x. adults

$$
-6 x-17 y=-196
$$

y. children $\quad y=8$
z. seniors

Substitute the 8 into one of the equations to find x.

$$
-6 x-17(8)=-196
$$

$$
-6 x-136=-196
$$

$$
-6 x=-60
$$

$$
x=10
$$

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?

```
x. adults }\quadx=1
y. children y=8
z. seniors }\quadz=
```

Substitute the 8 and 10 into one of the equations to find z.

$$
13(10)+30(8)+5 z=405
$$

$$
130+240+5 z=405
$$

$$
5 z=35
$$

$$
z=7
$$

The new animated feature film is now playing 3 times a day at the local movie theater. One day, there were 20 adults, 43 children, and 10 senior citizens and the theater made $\$ 614$ in ticket sales. At the next showing, there were 24 adults, 59 children, and 20 senior citizens with the theater making $\$ 852$ in ticket sales. At the last showing, the theater made $\$ 405$ with 13 adults, 30 children, and 5 senior citizens. How much are the tickets at the movie theater?
x adults $\quad x=10 \quad$ An adult ticket costs $\$ 10$, a child's ticket costs y. children $\quad y=8 \quad \$ 8$, and a senior citizen's ticket costs $\$ 7.00$. z. seniors $\quad z=7$

During the 1992-93 season, Michael Jordan made 2,541 points on 1,468 shots. Some were 3-point baskets, some were 2-point baskets, and rest were foul shots, which were worth 1 point. The amount of 2-point baskets were the same as twice his foul shots minus 41. How many points did he score of the 3 types of baskets?
x. foul shots

$$
x+y+z=1468
$$

y. 2-point baskets

$$
x+2 y+3 z=2541 \quad \text { Set up the } 3 \text { equations. }
$$

z. 3-point baskets

$$
y=2 x-41
$$

$$
\begin{array}{lll}
x+2 x-41+z=1468 & 3 x-41+z=1468 & 3 x+z=1509 \\
x+2(2 x-41)+3 z=2541 & x+4 x-82+3 z=2541 & 5 x+3 z=2623
\end{array}
$$

Substitute the bottom equation into the other 2 to eliminate the y variable.

During the 1992-93 season, Michael Jordan made 2,541 points on 1,468 shots. Some were 3-point baskets, some were 2-point baskets, and rest were foul shots, which were worth 1 point. The amount of 2-point baskets were the same as twice his foul shots minus 41 . How many points did he score of the 3 types of baskets?
x. foul shots
y. 2-point baskets
z. 3-point baskets
(-3) $3 x+z=1509$

$$
5 x+3 z=2623
$$

Multiply the top equation by -3 and add it to the bottom to eliminate the z.

$$
\begin{gathered}
-9 x-3 z=-4527 \\
\frac{5 x+3 z=2623}{} \begin{array}{c}
-4 x=-1904 \\
x=476
\end{array}
\end{gathered}
$$

During the 1992-93 season, Michael Jordan made 2,541 points on 1,468 shots. Some were 3-point baskets, some were 2-point baskets, and rest were foul shots, which were worth 1 point. The amount of 2-point baskets were the same as twice his foul shots minus 41. How many points did he score of the 3 types of baskets?
x foul shots $\quad x=476$
y. 2-point baskets
z. 3-point baskets $\quad z=81$

$$
\begin{gathered}
3(476)+z=1509 \\
1428+z=1509 \\
z=81
\end{gathered}
$$

Substitute the x into one of the equations to find z.

During the 1992-93 season, Michael Jordan made 2,541 points on 1,468 shots. Some were 3-point baskets, some were 2-point baskets, and rest were foul shots, which were worth 1 point. The amount of 2-point baskets were the same as twice his foul shots minus 41 . How many points did he score of the 3 types of baskets?

x. foul shots	$x=476$
y. 2-point baskets	$y=911$
z. 3-point baskets	$z=81$

Substitute the x into the equation to find y.

Michael Jordon made 476 foul shots, 911 2-point baskets, and 813 -point baskets.

Assignment:

 System of Equations with 3 Variables Word Problems Worksheet