## Bell Work:

Using a half sheet of paper (share the other half with someone around you), answer the 4 questions below.

1. What is Mr. Petry's school email address?
2. What is Mr. Petry's school telephone number?
3. What is the penalty when late assignments are handed in?
4. If you bring a drink to class, what must it have?

## Properties of Exponents A

## Chapter 1

Foundations of Functions
In this chapter, you will...
Use properties of exponents,
Determine if a number relationship is a function, and
Use functional notation.

In this lesson you will multiply and divide monomials.

$$
12 a^{3} b^{2} c^{5}\left(4 a^{6} b^{2} c^{4}\right)=
$$

$$
\frac{12 a^{3} b^{2} c^{5}}{4 a^{6} b^{2} c^{4}}=
$$

Multiplying monomials:

$$
d^{3}\left(d^{5}\right)=d^{8}
$$

## What is a monomial?

A number andlor one or more variables

## What is the rule for multiplying monomials?

Add the exponents.

$$
\left(x^{3} y^{4} z\right)\left(x^{3} y^{6} z^{2}\right)=x^{6} y^{10} z^{3}
$$

## Properties of Exponents A

Chapter 1-5a
Multiplying monomials:
$-6 a^{4} b c^{2}\left(5 a^{2} b^{3} c^{2}\right)=-30 a^{6} b^{4} c^{4}$

$$
4 f^{2} g h^{3}\left(-8 f^{-3} h\right)\left(-3 f^{4} h^{-5}\right)=96 f^{3} g h^{-1}=\frac{96 f^{3} g}{h^{1}}
$$

Move negative exponents.

$$
\begin{aligned}
-u^{3} v^{3} w^{-2}\left(8 u^{-2} v w^{4}\right)\left(-3 u^{-7} v^{-5} w^{6}\right) & =24 u^{-6} v^{-1} w^{8} \\
& =\frac{24 w^{8}}{u^{6} v}
\end{aligned}
$$

## Properties of Exponents A

Chapter 1-5a

Dividing monomials:

$$
\frac{r^{7}}{r^{3}}=r^{4}
$$

$$
\frac{g^{2} h^{8}}{g^{6} h}=g^{-4} h^{7}=\frac{h^{7}}{g^{4}}
$$

$$
\frac{m^{4} n^{2}}{m n^{5}}=m^{3} n^{-3}=\frac{m^{3}}{n^{3}}
$$

## What is the rule for

 dividing monomials?Subtract the exponents.

Dividing monomials:

$$
\frac{-24 a^{2} b^{11}}{6 a^{7} b^{6}}=-4 a^{-5} b^{5}=\frac{-4 b^{5}}{a^{5}}
$$

The -4 doesn't move because it is a coefficient, not an exponent.
$\frac{-12 c^{6} d^{11} e}{-48 c^{6} d^{6} e^{5}}=\frac{1 c^{0} d^{5} e^{-4}}{4}=\frac{d^{5} e}{4 e^{4}}$

$$
c^{0}=1
$$

Anything to the 0 power $=1$.
$\frac{72 p^{-4} q^{4} r^{3}}{32 p^{3} q^{-2} r^{3}}=\frac{9 p^{-7} q^{6} r^{0}}{4}=\frac{9 q^{6}}{4 p^{7}}$

Make the problem. You have to make the problem, using at least 2 negative exponents, to equal the answer.
There are infinitely many problems, but here are 2.
$36 a^{3} b^{6} c^{5}=\left(6 a^{-2} b^{2} c^{8}\right)\left(6 a^{5} b^{4} c^{-3}\right)$

$$
=\left(4 a^{-6} b^{-4} c^{-1}\right)\left(9 a^{9} b^{10} c^{6}\right)
$$

There are infinitely many problems, but here are 2.

$$
\frac{f^{6} h^{4}}{5 g^{3}}=\frac{4 f^{4} g^{-4} h^{7}}{20 f^{-2} g^{-1} h^{3}}=\frac{6 f^{-2} g h^{2}}{30 f^{-8} g^{4} h^{-5}}
$$

What is the rule for multiplying monomials?
Multiply the coefficients.
Add the exponents.

What is the rule for dividing monomials?
Divide the coefficients.
Subtract the exponents.

Negative Exponents:
Move them and make the positive.

## Properties of Exponents A

Chapter 1-5a

## Assignment:

## Properties of Exponents A Worksheet

