Systems of Equations

Bell Work:

1. Find the intersection. Show all work.

$$
\begin{gathered}
3 x+4 y=44 \\
2 x-3 y=1
\end{gathered}
$$

2. What type of answer do you have if you have parallel lines?
3. What type of answer do you have if you have coinsiding lines?
4. What is the name of parent function with an equation of $f(x)=c$?

Systems of Equations

Solve.

1. $2 x+5 y=36 \quad 2 x+5\left(\frac{1}{4} x+2\right)=36$

$$
y=\frac{1}{4} x+2
$$

Use substitution because one of the equations is slope-intercept.

$$
\begin{gathered}
2 x+\frac{5}{4} x+10=36 \\
8 x+5 x+40=144 \\
13 x=104 \\
x=8
\end{gathered}
$$

Solve.

$$
y=\frac{1}{4}(8)+2=6
$$

Substitute the answer into one of the equations to find the other answer.

The answer: $(8,6)$

Systems of Equations

Solve.

2. $y=-\frac{2}{3} x+6$

$$
2 x+3 y=12
$$

$$
2 x+3\left(-\frac{2}{3} x+6\right)=12
$$ Solve.

$$
2 x-2 x+18=12
$$

Use substitution because one of the equations is slope-intercept.
$18=12 \quad$ There is no solution because 18 does not equal 12.

Any time that one number equals another number ($0=-4$ or $-8=13$), they are parallel lines and have no solution.

Systems of Equations

Solve.

3. $16 x+12 y=-32$
$(-4) 4 x+3 y=-8$
Use elimination because both equations are standard.

$$
\begin{gathered}
16 x+12 y=-32 \\
-16 x-12 y=32 \\
0=0
\end{gathered}
$$

There are infinitely many solutions because these are coinsiding lines.
The answer: Infinitely Many Solutions
Any time that one number equals another number ($0=0$ or $-8=-8$), they are coinsiding lines and have infinitely many solutions.

Systems of Equations

Solve.

4. $x+2 y=9$

$$
x+2\left(-\frac{1}{2} x-4\right)=9
$$

$$
y=-\frac{1}{2} x-4
$$

Use substitution because one of the equations is slope-intercept.

There is no solution because -8 does not equal 9 .

Any time that one number equals another number ($0=-4$ or $-8=13$), they are parallel lines and have no solution.

Systems of Equations

Solve.

5. $4 x-2 y=20$

$$
y=2 x-10
$$

$$
\begin{aligned}
& 4 x-2(2 x-10)=20 \\
& 4 x-4 x+20=20
\end{aligned}
$$

Use substitution because one of the equations is slope-intercept.

$$
20=20
$$

There are infinitely many solutions because these are coinsiding lines.

The answer: Infinitely Many Solutions
Any time that one number equals another number ($0=0$ or $-8=-8$), they are coinsiding lines and have infinitely many solutions.

Systems of Equations

Solve.

6. $y=\frac{3}{2} x+13$
(4) $\frac{3}{2} x+13=\frac{1}{4} x-7^{(4)}$

Solve.

$$
y=\frac{1}{4} x-7
$$

$$
6 x+52=x-28
$$

Use substitution because both of the equations are slope-intercept.

$$
\begin{gathered}
5 x=-80 \\
x=-16
\end{gathered}
$$

$$
y=\frac{1}{4}(-16)-7=-11
$$

Substitute the answer into one of the equations to find the other answer.

The answer: ($-16,-11$)

Systems of Equations

Type of Lines:

1. Intersecting Lines
2. Parallel Lines

$$
0=-16 \text { or } 7=13
$$

3. Coinsiding Lines

$$
0=0 \text { or }-3=3
$$

Answer:

The point where they intersect No Solution

Infinitely Many Solutions

Systems of Equations

Assignment:

FLEUNCY PRACTICE: Systems of Equations Worksheet

