Bell Work:

1. Find the intersection. Show all work.

- 3x + 4y = 44
- 2x 3y = 1
- 2. What type of answer do you have if you have parallel lines?
- 3. What type of answer do you have if you have coinsiding lines?
- 4. What is the name of parent function with an equation of f(x) = c?

Solve.

1.
$$2x + 5y = 36$$

 $y = \frac{1}{4}x + 2$

Use substitution because one of the equations is slope-intercept.

$$2x + 5\left(\frac{1}{4}x + 2\right) = 36$$
$$2x + \frac{5}{4}x + 10 = 36$$
$$8x + 5x + 40 = 144$$
$$13x = 104$$
$$x = 8$$

Solve.

 $y = \frac{1}{4}(8) + 2 = 6$

Substitute the answer into one of the equations to find the other answer.

The answer: (8, 6)

Solve.

2.
$$y = -\frac{2}{3}x + 6$$
 22
 $2x + 3y = 12$

$$2x + 3\left(-\frac{2}{3}x + 6\right) = 12$$

Solve.

2x - 2x + 18 = 12

Use substitution because one of the equations is slope-intercept.

18 = 12There is no solution because18 does not equal 12.

Any time that one number equals another number (0 = -4 or -8 = 13), they are parallel lines and have no solution.

Solve.

3.
$$16x + 12y = -32$$

 $(-4) 4x + 3y = -8$
Use elimination because
 $16x + 12y = -32$
 $-16x - 12y = 32$
 $0 = 0$

Use elimination because both equations are standard.

The answer: Infinitely Many Solutions

There are infinitely many solutions because these are coinsiding lines.

Solve.

Any time that one number equals another number (0 = 0 or -8 = -8), they are coinsiding lines and have infinitely many solutions.

Solve.

4. x + 2y = 9

$$x + 2\left(-\frac{1}{2}x - 4\right) = 9$$

Solve.
$$x - x - 8 = 9$$

-8 = 9

Use substitution because one of the equations is slope-intercept.

 $y = -\frac{1}{2}x - 4$

The answer: No Solution

There is no solution because -8 does not equal 9.

Any time that one number equals another number (0 = -4 or -8 = 13), they are parallel lines and have no solution.

Solve.

5.
$$4x - 2y = 20$$

 $y = 2x - 10$
 $4x - 2(2x - 10) = 20$
 $4x - 4x + 20 = 20$
Solve.

Use substitution because one of the equations is slope-intercept.

$$20 = 20$$

There are infinitely many solutions because these are coinsiding lines.

The answer: Infinitely Many Solutions

Any time that one number equals another number (0 = 0 or -8 = -8), they are coinsiding lines and have infinitely many solutions.

Solve.

6. $y = \frac{3}{2}x + 13$ $y = \frac{1}{4}x - 7$

Use substitution because both of the equations are slope-intercept.

(4)
$$\frac{3}{2}x + 13 = \frac{1}{4}x - 7$$
 (4)
 $6x + 52 = x - 28$
 $5x = -80$
 $x = -16$
 $y = \frac{1}{4}(-16) - 7 = -11$

Substitute the answer into one of the equations to find the other answer.

The answer: (-16, -11)

Type of Lines:

- 1. Intersecting Lines
- 2. Parallel Lines
 - 0 = -16 or 7 = 13
- 3. Coinsiding Lines

0 = 0 or -3 = 3

Answer:

The point where they intersect

No Solution

Infinitely Many Solutions

Assignment:

FLEUNCY PRACTICE: Systems of Equations Worksheet