Systems of Equations - Elimination

Bell Work:

1. Find the solution. Show all work.

$$
\begin{gathered}
7 x+4 y=18 \\
7 x-6 y=-62
\end{gathered}
$$

2. What is elimination?
3. What is the slope of the line with an equation of $7 x+3 y=-35 ?$
4. What is the function equation for the linear parent function?

Systems of Equations - Elimination

Solve by using elimination.

$$
\begin{array}{ll}
\text { (3) } 8 x+y=34 & \begin{array}{l}
\text { Multiply } 1 \text { equation, so that } \\
\text { one of the coefficients are } \\
\text { the same. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& 24 x+3 y=102 \\
+ & 5 x-3 y=43
\end{aligned}
$$

$$
29 x=145
$$

$$
x=5
$$

Solve.
Add.

Find the other answer.

$$
\begin{gathered}
8(5)+y=43 \\
40+y=43 \\
y=3
\end{gathered}
$$

The answer: $(5,3)$

Systems of Equations - Elimination

Solve by using elimination.

$$
\begin{aligned}
4 x-7 y=50 & \begin{array}{l}
\text { Multiply 1 equation, so that } \\
\text { one of the coefficients are } \\
\text { the same. }
\end{array} \\
(-2) 2 x+3 y=12 &
\end{aligned}
$$

Add.

$$
+-4 x-6 y=-24
$$

$$
-13 y=26
$$

$$
y=-2
$$

 \(y=-2\)
 Solve.

Find the other answer.

$$
2 x+3(-2)=12
$$

$$
\begin{gathered}
2 x-6=12 \\
2 x=18 \\
x=9
\end{gathered}
$$

The answer: $(9,-2)$

Systems of Equations - Elimination

Solve by using elimination.

(5) $8 x-y=-44 \quad$ Multiply 1 equation, so that one of the coefficients are

$$
2 x+5 y=-32
$$

$$
40 x-5 y=-220_{A d d} .
$$

$$
+2 x+5 y=-32
$$

$$
42 x=-252
$$

Solve.

You can multiply the top equation by 5 to eliminate the y, or the bottom equation by - 4 to eliminate the x.

Find the other answer.

$$
\begin{gathered}
2(-6)+5 y=-32 \\
-12+5 y=-32 \\
5 y=-20 \\
y=-4
\end{gathered}
$$

The answer: ($-6,-4$)

Systems of Equations - Elimination

Solve by using elimination.

$$
\begin{aligned}
(-2) 5 x+6 y=86 & \begin{array}{l}
\text { Multiply 1 equation, so that } \\
\text { one of the coefficients are } \\
\text { the same. }
\end{array} \\
10 x-3 y=7 &
\end{aligned}
$$

You can multiply the

$$
-10 x-12 y=-172
$$ top equation by -2 to eliminate the x, or the

Add. bottom equation by 2
$+10 x-3 y=7$

$$
\begin{aligned}
-15 y & =-165 \\
y & =11
\end{aligned} \quad \text { Solve. }
$$

The answer: $(4,11)$

Systems of Equations - Elimination

Solve by using elimination.

$$
\begin{array}{cl}
(-4) 3 x+8 y=-69 & \begin{array}{l}
\text { Multiply 1 equation, so that } \\
\text { one of the coefficients are } \\
\text { the same. }
\end{array} \\
-12 x+5 y=-114 & \text { Find the other answer. } \\
-12 x-32 y=276 \\
+12 x+5 y=-114 & \text { Add. } \\
\begin{array}{c}
12 x+5(-6)=-114 \\
-27 y=162
\end{array} & 12 x-30=-114 \\
\hline & 12 x=-84 \\
& \\
x=-7
\end{array}
$$

Solve.

$$
y=-6
$$

Systems of Equations - Elimination

Solve by using elimination.

$$
\begin{array}{rlll}
6 x+11 y=-37 & \begin{array}{l}
\text { Multiply } 1 \text { equation, so that } \\
\text { one of the coefficients are } \\
\text { the same. }
\end{array} & \text { Find the other answer. } \\
\text { (11) } x-y=8 & \begin{array}{l}
\text { You can multiply the } \\
\text { bottom equation by }-6
\end{array} & 3-y=8 \\
\text { to eliminate the } x \text {, or } \\
\text { the bottom equation by } \\
11 \text { to eliminate the } y . & -y=5 \\
+11 x-11 y=88 & \text { Add. } & y=-5
\end{array}
$$

$$
\begin{aligned}
17 x & =51 \\
x & =3
\end{aligned} \quad \text { Solve }
$$

The answer: (3, -5)

Systems of Equations - Elimination

Assignment:

FLEUNCY PRACTICE: Systems of Equations: Elimination B Worksheet

