Get a graphing calculator.

Bell Work

1. $X+Y=$
2. $X Y=$
3. $Y X=$

$$
X=\left[\begin{array}{cc}
2 & -5 \\
3 & 0
\end{array}\right]
$$

$$
Y=\left[\begin{array}{cc}
-7 & 3 \\
2 & -4
\end{array}\right]
$$

4. Solve the system of equations using inverse matrices.

$$
\begin{aligned}
& 4 x-9 y=42 \\
& 11 x+5 y=56
\end{aligned}
$$

Find the determinant of each matrix.

$$
\begin{gathered}
4(-6)--7(8)= \\
-24+56= \\
32
\end{gathered}
$$

$$
B=\left[\begin{array}{cc}
3 & -9 \\
5 & 4
\end{array}\right]
$$

$$
3(4)-5(-9)=
$$

$$
12+45=
$$

$$
57
$$

1. Cross multiply.
2. Determinant = Down - Up

Find the determinant of each matrix.

$$
C=\left[\begin{array}{cc}
5 & 10 \\
6 & -9
\end{array}\right] \quad \begin{gathered}
5(-9)-6(10)= \\
-45-60= \\
-105
\end{gathered}
$$

There are many ways to write the determinant of C.
determinant of $C=\operatorname{det} C=|C|=\left|\begin{array}{rr}5 & 10 \\ 6 & -9\end{array}\right|$

Find the determinant of each matrix.

$D=\left[\begin{array}{ccc}4 & 6 & -3 \\ 0 & 11 & 2 \\ -9 & -5 & 8\end{array}\right]$
The graphing calculator can do the determinant.

1. Type the matrix in.
2. $2^{\text {nd }}$ Matrix MATH $\operatorname{det}($
3. The matrix
$\operatorname{det} D=-13$

Assignment:

Determinants and Cramer's Rule Worksheet

 Just Problems \#1 - 3